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Asymptotic formulae are derived for the fields of displacements, strains and stresses near a peak-shaped protrusion in the surface 
of an anisotropic elastic body (a "claw"-type singularity). The singular solutions constructed are interpreted as forces and torques 
concentrated at the tip of the peak, while the orders of growth of the displacement depend on the direction of the action of the 
force (longitudinal or transverse) and of the axis of the torque (twisting or bending) but not on the elastic properties of the material. 
The asymptotic analysis makes essential use of the observed analogy with one-dimensional models of thin rods of variable cross- 
section. © 2000 Elsevier Science Ltd. All rights reserved. 

Determinat ion of the singularities of the stressed state near irregularities of the boundary turns out to be a key 
factor in many branches of the mechanics of deformed bodies, such as the theory of fracture, computing methods 
and so on. Detailed studies have been devoted to corner and (to a lesser degree) conical spikes or inclusions for 
which the variables can be separated and the number  of dimensions reduced. The geometrically most complicated 
singularities of the boundary require the development of new asymptotic methods for specific shapes (such as peak- 
shaped inclusions and cavities [5-7], as well as "beak-shaped" protrusions [8-9]). We stress that the specific properties 
of the system of equations of elasticity theory make it difficult to apply the mathematical tools suitable for scalar 
equations or systems of first-order equat ions-- the  necessary derivations and transformations become 
unmanageable .  To reduce the number  of dimensions in investigating "claw"-type singularities a decisive role has 
been played by the observed analogy with one-dimensional  models of thin rods- - to  be precise, with the general 
asymptotic algorithms of [10, 11]. The formulae and the accompanying computations have been shortened by the 
use of matrix (rather than tensor) notation. In what follows a procedure for constructing formal asymptotic formulae 
will be presented; the legitimacy of the procedure follows from general results [12-15]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Let f l  be a homogeneous anisotropic body whose surface cgf~ has a singularity of the "claw" type (see Fig. 1), 
that is, near  the origin O it coincides with a peak-shaped set 

{x=(y,  z ) e R  3 : 0 < z < d ;  z - V ( y - Y ( z ) ) ~ o }  (1.1) 

where y = (Yl, Y2), ~' > 1 is a parameter  characterizing the sharpness of the claw, 0 is a two-dimensional domain 
bounded  by a simple smooth closed contour, and the relationsy = Y(z), z > 0, define the curved axis of the peak, 
which is tangent to the z axis; Y is a smooth vector-valued function, Y(0) = 0, c~y(0) = 0. By scaling, we reduce 
the geometric parameter  d to unity, that is, we make the coordinates dimensionless. 

We will write the elasticity problem in matrix form. The six-dimensional column vector of strains is defined as 

e(/,t)=(Eii, E22, E33, (I,-IE23 , ot-lE31 , 0t--IE13) t (1.2) 

where eij are the Cartesian components  of the strain tensor, t is the transposition symbol, and the factor et = 2 -1/2 
is chosen to ensure that the natural norms of the strain tensor and strain vector coincide. If the vector of 
displacements u is interpreted as a column vector (ul, u2, u3) t, then 

e(u) -- D(V) t u 

3! 0 0 0 R3 3 c¢3 2 3 

D(V) = 3 2 0 oc3 3 0 ac31 , V = grad, 3.i = 3x----f 
0 03 Or02 O.O 1 0 
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Let ~(u) be the column vector of stresses analogous to (1.2) and let A be the symmetric positive-definite matrix 
of elasticity moduli. Hook's law in a matrix notation is 

o(u) = Ae(u) (1.3) 

The equations of equilibrium and the boundary conditions in stresses are 

L(V)u(x) = D(-V)AD(V)t  u(x) = f (x ) ,  x ~ (1.4) 

B(x, V)u(x) -- D(n(x))AD(V)tu(x) = g(x), x ~ Of~ \ 0 (1.5) 

If v = (vl, v2) r is the normal to the contour &o C R 2, then by (1.2) the following formulae hold near the point 
O for the normal n to a~  

n(x)=N(x) - I (v l ( r l (y ,  z)), v2(rl(y, z)), Vo(y, z)) 

N(x) =(1 +v2(rl(y, z))) I/2, rl(y, z) = z-~'(y - Y(z)) 

Vo (y, z) = -v!  (rl(y, z)) (yz -I (Yl - YI (z)) + Yl'(Z)) - 

-v2(rl(Y, z))(?z-l(y2 - Y2(z))+ Y~(z)) 

The loads f and g are applied far from the point O. If they are in equilibrium, a solution u of problem (1.4), (1.5) 
exists in the energy class Wt2(~) 3. Near the singularity this solution coincides apart from exponentially small terms 
with a rigid displacement (see below, Section 3). In the case of arbitraryf and g they may be balanced by forces 
applied at the point O (the claw "scratches" an absolutely rigid body). The aim of this paper is to construct the 
corresponding singular solutions and to determine their properties. 

2. A S Y M P T O T I C  S O L U T I O N  O F  T H E  H O M O G E N E O U S  P R O B L E M  

Near the point O, we seek a formal asymptotic solution of problem (1.4), (1.5) as a power series: 

u(x )=U-2(z )+U-I (y ,  z)+U°(y,  z)+Ul(y,  z)+U2(y,  z)+... (2.1) 

U~ (y, z) = z ~k Qk (.q) (2.2) 

The unknowns are both the exponent ×k and the factor Qk, which is a function of the variables ~ = z-Y(y - Y(z)). 
Note that the matrices D(V) and D(n(x)) may be represented as follows: 

D(V) = D v + D z, D(n) = D v + v0O j (2.3) 

Dy = ~2 0 0 0 1 , Dz = DlOz 

0 0 0~ 2 0~ l 
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ii! 0 0  0 0 00 o o o 
Dr= '~2 0 av2 aVl 0 0 0 l ~ 0 

By (1.4), (1.5) and (2.3), we have 

L(V) = L°(Vy)+Ll(Vr, i)z)+L2(igz) 

N(x)B(x, V)=B°(y,  z, Vy)+BI(y, z, Vy, 3Oz)+B2(y, z, 3%) 
(2.4) 

L 0 =-DyADtv, L I =-DvAD ~ -DzAD(., L 2 =-DzAD ~ 
(2.5) 

B 0 = DYADS,, B I = DvAD ~ +voDiADty, B 2 =voDIAD ~ 

The operators on the right of (2.4) possess the following generalized similarities: 

L) (V)(zXU(rt(y, z)) = zX-2"t-)(l-l) FJ (rl(y, z)) 

BJ (x, V)(zXU(TI(y, z)))= z X-~'-J(I-2t)GJ (r](y, z)) 

Formulae (2.4) are interpreted as expansions in powers of z r-l, and it is therefore logical to assume in (2.2) that 
~¢k ~--" ~¢k-I "[- 1 --"y. 

Substituting (2.1) and (2.4) into (1.4), (1.5) and collecting coefficients of like powers of z, we obtain a recurrence 
sequence of problems for the "cross-section" to(z) 

L°U j = -LJU j-I - L2U j-2 in to(z) 

(2.6) 
BOu j = - B I u  j-I  - B2U j -2  o n  aogz) 

wherej = -2, -1 . . . . .  U -4 = U -3 = O. 
It is well known that when the right-hand sides are smooth the two-dimensional problem 

L°U = F in to(z), B°U = G on ikto(z) (2.7) 

has a solution U if and only if the following orthogonality conditions hold 

(F, ~q)to(z) +(G, ~q)iko(z) =0, q = I ..... 4 (2.8) 

~ !  = e l ,  (I)2 = e2,  (I)3 = e3, ~4(TI)  = @(111 e2 - ~2 el ) (2.9) 

where (.,-) is the scalar product in L 2 ( ~  ) and e / is the unit vector along thex / axis. The smooth (bounded) solution 
U of problem (2.7) is defined apart from a linear combination of the vectors (2.9) and becomes unique if the 
condition (U,  ~ q )  = 0 (q = 1 . . . . .  4)  is satisfied 

The structure of the initial terms of series (2.1) is the same as in the asymptotic expansion used in the theory 
of thin rods (see, e.g. [10]) 

U-2 (z) = elwl(e)+e2w2(z) 

U -| (y, z) : w3(z)e 3 + w4(z)O4(rl) - e3('qlazWl (z) + rl2(gzw2(z)) 

(2.10) 

LOu 0 = DyAD~U-I t -1 t -2 + DzA{DyU + DzU }in to(z) 

B°U 0 =-OvADtz U - I -  voDIA{D~.U -I +D~U -2} on ato(z) 
(2.11) 

According to equalities (2.10), the sums in braces in (2.11) vanish. Thus, the right-hand sides of system (2.11) 
satisfy the conditions for (2.8) to be solvable. 

Let us express the solution U ° of problem (2.11) in a form convenient for further transformations. To that end, 
we note the equalities, which follow from (2.10) and (2.3) 

The functions wp form a column vector w = (w 1 . . . . .  W4) t which is yet to be determined. Here wl and w2 describe 
in the main the deflection of the claw, w~ its displacement along the axis and w4 its twisting. 

According to (2.6), the problem for L ° is 
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By (2.11) and (2.12) 

D~U -I (y, Z) = Y(y)D(t)z )w(z) 

D(~z)=diag{ ~2, ~2z, ~z, ~z} 

0 

g(y)t = 0 -Y2 0 0 

0 1 0 0 
0 0 ot2yl -ff.2y 2 

U°(y, z )=X(y ,  z )OOOw(z)  

The matrix-valued function X satisfies the conditions 

il 
(2.12) 

(2.13) 

(2.20) 

(2.21) 

B°U 2 =-DvAD~U t -voDtA{D~.U t +D~U °} on 3to(z) 

Taking the relationships (2.16), (2.18) and (2.15) into account, as well as (2.12) and (2.13), we have 

0 = (e i, DzA{DtyU 1 + D[U°})to(z) - (e i, voDIA{DtyU 1 + D[U 0 })0to(z) = 

= Dz(DyYi e3, DIA{D[.U I + D[U°})to(z) = Oz(e i, DIA{D~,U 1 + D~U°})to(z) = 

= 3z[(yi e3, DzA{D~.U 0 +D[u-l})toCz)-(yi e3, voDIA{DtyU 0 + D~U-I})0toCz)] = 

2 t 3 = "~z (YiDI e ,  A{D~.X + Y})to(z)D(Oz)w(z) = 0, i = 1, 2 

L°X= DvAY in to(z), B°X=-DvAY on 3tKz) (2.14) 

The vector U ~ is determined from the boundary-value problem 

LOu t = DvAD~U ° + DzA{Dt U ° + D~U -I } in to(z) 

B°U I = -DvAD~U 0 - voDIA{D~.U ° + DtzU -I } on 3to(z) (2.15) 

The following formula holds for any function H smooth in ~ (see, e.g. [16]) 

~z j H(y, ~ z ( y ,  z )dy -  I H(y, Z)Vo(Y, z)dsy (2.16) 
to(z) z)dY = to S(z) ato(z) 

Using this relation, one shows that the first two conditions (2.8) for problem (2.15) to be solvable are satisfied. 
We have 

O=(e i, t 0 t -1 _VoDIA{D~,U 0 D~U-t})ato(z) 3zDIA{DyU +DzU })to(z)+ (e i, + = 

= Oz(D[ ei, A{D~ ,UO + D~ U-I })to(z) = Oz (-e3yi , DyA{D~ 'UO + D~ U-I })to(z) + 

+ Oz(e3yi , DvA{D.~ "UO + D[ U-I})~to(z) (2.17) 

where we have used the formula, which follows from (2.3) 

Die i = D~e3yi, i= 1,2 (2.18) 

The right-hand side of (2.18) vanishes by (2.11). By (2.13) and (2.16), the other two conditions for problem (2.15) 
to be solvable become 

0 = (¢ypi, DzAiD,vU 0 + D~U-l})to(z) _ (¢ i ,  voDtA{D~,U o + DtzU-I })i~.o(z) = (2.19) 

= -c~ z (D{~ i, A{D~.X + Y})to(z)D(Oz)w(z), i = 3, 4 

As a result, we obtain two equations for the vector w. One more pair of equations appears as a condition for 
the next problem to be solvable 

L°U 2 = DyAD~U 1 + DzA{D~U 1 + D~U O} in to(z) 
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The expressions yiD~le 3 and D~IO i occurring in (2.21) and (2.19) are identical with the columns of the matrix Y. 
Hence the system of differential equations for determining w becomes 

L(z, ~z )w(z) - D(-Oz )M(z)D(~ z )w(z) = 0 (2.22) 

By (2.14), the 4 x 4 matrix M is a positive-definite and symmetric Gram matrix 

M(z)= I Yt A(D~'X + Y)dY = I (D~,X + Y)' A(D~,X + Y)dy (2.23) 
co(z) to(z) 

3. S P E C I A L  S O L U T I O N S  

It can be shown that system (2.22) has the following solutions 

W q = e q ,  q = 1 ..... 4; w 4 + i ( z )  = ze i, i = 1, 2 (3.1) 

where e I . . . . .  e 4 are unit vectors along the axes in R 4. According to (2.10) and (2.12), if the column-vectors 
(3.1) are substituted into formula (2.1), the terms U 2, U 3 . . . .  vanish (for example, the operator D(0z) nullifies 
W 1 . . . . .  W 6 in (2.13)), while the terms of (2.10) with W q instead of w form rigid displacements q~q(y, z), with 
~6-i (y, z) = eiz -y~e 3 (i = 1, 2). 

We will findsix further solutions T t, . . . ,  T 6 which will later be given the meaning of point forces and torques. 
We combine the column vectors (3.1) in a 4 x 6 matrix W and define another matrix 

-z  0 0 0 =(VI V6 ) 
V= 0 1 0 0 ..... 

0 0 1 0 

(3.2) 

We note that W is obtained from V by permuting the outer columns and changing signs. Let T denote a matrix 
satisfying the equality 

M(z)D(3 z)T(z) = V(z) (3.3) 

Since M(z) = Z(z)M(1)Z(z ) ,  where Z(z)  = diag{z 2r, z 2Y, z Y, z2Y}, we arrive at the formulae 

TJ(z) --- D(Oz) -I Z(z) -I M(I) -I Z(z) -I V.i (z) 

D(Oz) -I =diag{~zl~z I, 3zlOz 1, 0zl~z I} (3.4) 

3zlZX=(x+l)-lzX+~ for x~  I 

~zrZ - I= l nz ,  Oz I lnz=z( Inz-1)  

Replacing the columns w in formulae (2.10) and (2.13) by T j and taking (2.1) into account, we obtain fields of 
displacements ~t 'j that generate in (1.4) and (1.5) residual terms which are small near the point Q. Let us determine 
the power orders of the components of the vector-valued functions T j. Letting an asterisk stand for factors which 
are of no significance in the present context, we have 

la . - I+ 7 Tq(z) = (z rtq *, z laq *, z ~ *, zpq-I ,) (3.5) 

I . t l=l . t2=3-4~ t, I.t3=2-3q(, I . t4=~ts=P.6=2-4](  

4. G R E E N ' S  F O R M U L A  A N D  P O I N T  F O R C E S  

The following one-dimensional Green's formula holds 

b 
[. V ~ (z)L(z, 2.. )w(z)dz = 2E(v, w) - (W(O~)' v(z))t N(z, O~)w(z)I~ 

E(v, w) = 1 !  (D(O z)t v(z))' M(z)D(3 z)' w(z)dz 

(4.1) 

N(z, Oz) = V(Oz)tM(z)D(Oz) I 
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Letting lm and 0m denote the m x m identity and zero matrices, one can verify by direct calculations that 

N(z, ~z)W(z)=06,  (W(~z) tW(z) ) tN(z ,  ~z)T(z )= l  6 (4.2) 

In the context of the one-dimensional model, relations (4.2) mean that the solutions T ], T 2, T 3 and T 4, T 5, T 6 
define transverse and longitudinal forces and twisting and bending torques. It turns out that in the non-symmetric 
case analogous treatment of three-dimensional fields requires some readjustment of the basis {T I . . . . .  T6}. To 
verify this ,we link the one-dimensional Green's formula (4.1) with the usual three-dimensional formula. Consider 
the integrals 

[pq(Z)= S tI)P(Y ' Z)(Y(3)( tllq; Y, z)dy= 
to(z) 

= ~ dpP(y, z)DIAD(V)twq(y,  z)dy, p, q = l  ..... 6 (4.3) 
o~(z) 

~lJq(Y, z)= Vfl-2'q(z)+ W-l'q(y, z)+~lJ0'q(y, z)+ ~'pl'q(y, z) (4.4) 

The three-dimensional fields (4.4) are defined, in accordance with representation (2.1), by the solutions T q. 
2q l q  0q  ,./ Specifically: q~- ' , qJ- ' and q~ ' are given by formulae (2.10) and (2.13) in which w has been replaced by T ,  and 

q, Lq is determined from problem (2.15) with U ~ = q~q'~, k = -1, 0. 
Thus, for the aforementioned interpretation of the vectors q~J, . . . ,  q,6, we must have an equality I = 16 -t- o(1), 

where I = (Ipq) is a 6 × 6 matrix whose elements are the integrals (4.3). 
By formulae (2.3) and (2.10), (2.12), (2.13), the column vectors of strairis constructed from q~q are 

E(kl jq)  --'= ot (v)~l  jq = A(D[.X+ Y)DT q + (O~.~l j3'q + D ~ ° 2 ' q ) +  O~W 3,q (4.5) 

By expansion (4.5), we can express the integral (4.3) as a sum ~p0 + IIpq + 12q and calculate its terms. 
First le tp  = 3, 4. By (4.5), we have 

lOq(Z) = ~ dOP(y) t DIA(D~.X(y Z)+ Y(y))dyDTq(z)  
to(z) 

[14,1 = O(z ~'-I ), 12q = O(z27-2)q = 3, 4 

The orders of the infinitesimals 1~ and l~q can be computed on the basis of representations (3.5) and the inequalities 

,~ , z) <- cz ~q +t,(v-I)-,,,'~-,~ (4.6) 
33i :OZ t ~qJ(P'q)(Y' 

re, n = 0 , 1  . . . . .  i =  1 , 2 .  

Let YP denote a column of the matrix Y. Since.D~(DP (y) = YP(y)(p = 3, 4), formulae (2.3) and (3.4) imply that 

lOq (Z) = (e I')t M(z)D(~z)T q (Z) = (e p )t V q (z) = 8p, q (4.7) 

p = 3 , 4 ;  q =  I . . . . .  6 

We now turn to the casep  = 1, 2. By (4.6), we have l~(z)  = O(zV-l)(q = l, 2) and I23(z ) = O(z2Y-2). We assert 
tha t / °  m = 0 ( q  = 1 . . . . .  6 ) .  Since ~ = e p, we obtain by (2.14) and ( 2 . 1 8 )  

(eP)t DIA(DtyX + Y)dY = ~ (D~.e3yp)t a(DyX + Y)dy = 
to(z) to(z) 

= - I (Yp e3)t DyA(DtyX + Y)dy+ J (ype 3)t Dvm(DtyX + Y)dsy (4.8) 
to(z) ~to(z) 

Using relations (2.15) and (2.16), (2.18), we find that 

lt',q(Z)= I (eP)'DIAH~dy = I (D;.e3yp)tAHlqdy = 
to(z) to(z) 

=- S (ype3)t OyAHlqdy + I (ype3)t OvaH~dSy = 

to(z) 3to(z) 
3 t  0 3 t  1 = ( y p e )  OzDiAnqdy - ~ = (ype ) voDiAHqdsy 3 z J (ype3)tDiaHOdy (4.9) 
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= o' v + D V 2'q H ° = + 

Since ypD~e 3 = -(ev)'Y(y) = - ~  we have 

I t ( z )  =-(ep)t~zM(z)D(~z)Tq(z), p = 1, 2, q = I ..... 6 (4.10) 

By (3.3) and (3.2), the column-vectors M(z)D(bz)TT(z) are constant for q = 3 . . . . .  6, and therefore Ip# = 0. In 
the case q = 1, 2, we have 

11 (Z) = (e p )' OzM(z)D(3 z )T q (z) = (e p)t  Oz ze q = (el')' eq = 8p, q 

Now letp = 5, 6. Using relations (3.5) and (4.6), we observe that 

l~(z)=O(zV-I), q=4,5 ,6 ;  12(z)=O(zV), q = l , 2  

w(z)  

-e3 yi)¢ DiAHq(z)-(e3 yi)t DjAHIq(z)}dz, i= p - 4  

Using equality (4.8) and repeating the transformations (4.9), we deduce, by virtue of relations (3.3) and (3.2) 
withp = 5, 6, that 

l°r,q (z) + I t (z) = -z(e p )t Oz M(z)D(az )Tq (z) + (e p)' M(z)D(3 z )T q (z) (4.11) 

Thus, the matrix I of integrals (4.3) may be written as follows, apart from infinitesimals of order O(z r-~) 

I = 13+L KI 
03 13]' K=(K#), L=(L#) 

L3m=lOm , L33=Lmj=0,  Kij=li.j+3, re=l ,2;  i , j=1 ,2 ,3  

If the structure of the peak is symmetric, K = L = 03, so that the three-dimensional fields T~, ., ~F 6 themselves 
admit of the same mechanical interpretation as T l . . . . .  T'  (see the text after (4.2)). If K and I] are not zero, we 
must invert the matrix I and introduce a new basis 

(v ,Vo 2 . . . . .  + 6 ) = ( v ,  . . . . .  + + ) t - '  = 

I +3 +3 Since the lower blocks of the matrix F consist of zeros, the vectors Vl~ and XlA are not different (j = 1, 2, 3). 
m 3 The differences ~t' 0 - Vm are linear combinations of the matrices W . . . . .  q~. Computation of the orders (with 

respect to z) of the coefficients of the combinations shows that the resulting increments are infinitesimal relative 
to q,m. The same is true of the difference q'03 - V3 expressed in terms of Vi, xt,2 and ~,4, V5, V6. Thus, 
orthogonalization of the basis (4.4) implies changes only in the lower-order asymptotic terms. 

5. S P E C I F I C  F O R M U L A E  

Suppose an isotropic body (1.1) (with Lam6 constants ~. ~> 0 and la > 0) is formed by rotation of an arc of a 
circle of radius d about the tangent, that is, after dropping infinitesimals of order o(z 2) 

Y(z )=0 ,  T = 2 ,  o~={yER2: ly l<d  -t} 

Suppose that d -- 1. Then the matrices A, X and M are given by 

/[ot2(y12 _ y2) YIY2 -y, 0 

X(y) = i i  A' YIY2 a2(Y~-Y~) 0 -Y2 0 0 0 
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M = d i a g [ ~ E , ~ E , 2 r c E , 4 g } ,  v =  ~, E = g 3 Z , +  21.t 
[ 4  4 2(~,+l+t)' ~+~t  

where v and E are Poisson's ratio and Young's modulus and U3 is the 3 x 3 matrix all of whose elements are l's. 
The polynomial solutions (3.4) of the resulting problem (2.22) have the form 

T i (z) = -~-11~211~31E-Iz ~3 e i 

T4+i(z) = l~-l~ll~21E-IzfJ2e i, i = 1,2 

T3(z) = 8n-1~21E-Iz ~2/2e3 ' T4(z) = 2~-II~/l~-Izl31e 4 

13k = k-4~/, k = 0, 1,2,3 

By symmetry, the three-dimensional fields qjl . . . . .  x.p6 are determined by formula (4.4), that is, the matrix 1 -~ 
in (4.12) is the identity. Thus, the singular solutions generated by unit shearing forces are defined as follows 

~PS(Y,Z) = lI-IE-l(el(~ll~21z~2 + °~2(Y 2 -y22"z~°)+e2ylY2Z~°)) 

~£j6(y, z) = n - l e  -1 (elyly2 z~° + e2(13i4~21Z 132 + O~ 2 (y2 _ y2)z130 )) (5.1) 

The singularities O(z '-3r) corresponding to twisting and bending torques are weaker than the singularity 
O(z 2-+r) of the vectors T 5 and tlJ6, namely 

tp4(y, z) = -2n-lg-I[Y~' a( el Y2Zlh - e2 yl z ~ ) 

/r~-1,~-1+13a a2(y?  _ y2)zl~l )+ e2ylY2Zfh ) Wl(Y,Z)=-2rc-lE-l(elt~'2 P3 + " + 

W2(y, z) = -2rc - lE  -I (elyjy2z fh + e2(~+l~31Z% + a 2 ( y  P - Y22)z I+l )) (5.2) 

Finally, the minimum singularity exponent 1 - 27 is associated with a longitudinally acting force 

tp3 (y,z)  = _ / I C I E - I  (elylz-I+fJ2/2 + e2ylz-I+fJ2/2-1 _ e3 21321z13~j/2) (5.3) 
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The singularities were compared on the basis of the orders of the displacements as z --> 0. The stresses and strains 
are O(z -2%1) for all torques and O(z -2~) for all forces, that is, in this sense the longitudinal and transverse forces 
balance out. However, the exponents -2~/-1 and -27 may be found by simpler reasoning and do not require a 
complete investigation of the structure of the elastic solutions. 

Thus, the singularity of the displacement field near the tip of a symmetric isotropic peak proves to be a linear 
combination of the vector-valued functions (5.1)-(5.3). Similarly simple relations may be obtained for an arbitrary 
peak, non-symmetric or anisotropic, provided the matrix M in the system of differential equations (2.22) is known. 
Computation of the matrix M(z) = Z(z)M(1) from the integral representation (2.23) is the only point in the 
asymptotic procedure where it is necessary to solve a two-dimensional problem of elasticity theory (2.14), over the 

i cross-section o~ = ¢o(1). After that, the explicit fo.rmulae (3.4) yield the vectors T . . . . .  7 6, which depend on the 
variable z. Replacing the column-vectors co by T j in expressions (2.10)-(2.13) and using representation (2.1) for 
the three-dimensional field, one obtains singular solutions ~l  . . . . .  ~ analogous to (5.1)-(5.3). Finally, renormalizing 
these solutions in accordance with (4.12) gives them the same physical meaning as in the isotropic case. 
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